Generalization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form
نویسنده
چکیده
We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary convex cone in place of the symmetric cone. Even though some of the impressive properties attained by Nesterov-Todd algorithms is impossible in this general setting of convex optimization problems, we show that essentially all primal-dual interior-point-algorithms for LP can be extended easily to the general setting. We provide three frameworks for primal-dual algorithms, each framework corresponding to a diierent level of sophistication in the algorithms. As the level of sophistication increases, we demand better formulations of the feasible solution sets, but our algorithms, in return, attain provably better theoretical properties. We also make a very strong connection to Quasi-Newton Methods by expressing the square of the symmetric primal-dual linear transformation (so-called scaling) as a BFGS update in the case of the least sophisticated framework.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملInterior-point Algorithms for Convex Optimization Based on Primal-dual Metrics
We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms whose iteration complexity we analyse are so-called short-step algorithms. Our iteration complexity bounds match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming...
متن کاملOn implementing a primal-dual interior-point method for conic quadratic optimization
Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...
متن کاملDual versus primal-dual interior-point methods for linear and conic programming
We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 1 شماره
صفحات -
تاریخ انتشار 2001